

SPACEWIRE RMAP IP CORE

Session: SpaceWire Components

Long Paper

Steve Parkes, Chris McClements, Martin Dunstan

University of Dundee, School of Computing, Dundee, DD1 4HN, Scotland, UK

Wahida Gasti

European Space Agency, Postbus 299, NL-2200 AG Noordwijk, The Netherlands

E-mail: sparkes@computing.dundee.ac.uk, cmcclements@computing.dundee.ac.uk,

mdunstan@computing.dundee.ac.uk, wahida.gasti@esa.int

ABSTRACT

The SpaceWire Remote Memory Access Protocol (RMAP) provides a standard

mechanism for reading from and writing to memory in a remote SpaceWire node.

This simple but powerful capability is already being designed into components like

the SpW-10X router and missions like Bepi Colombo and MMS.

The development of a generic IP core implementing the RMAP protocol will enable

users to readily implement the RMAP protocols in FPGAs or ASICs, customising it to

their specific mission needs. The RMAP IP core is being developed by University of

Dundee for ESA. This paper describes the main features of the RMAP IP core, its

architecture, interfaces and initial performance.

1 INTRODUCTION

1.1 SPACEWIRE

SpaceWire is a communications network for use onboard spacecraft. It is designed to

connect high data-rate sensors, large solid-state memories, processing units and the

downlink telemetry subsystem providing an integrated onboard, data-handling

network. SpaceWire links are serial, high-speed (2 Mbits/sec to 200 Mbits/sec or

higher), bi-directional, full-duplex, point-to-point data links which connect together

SpaceWire equipment. Application information is sent along a SpaceWire link in

discrete packets. Control and time information can also be sent along SpaceWire

links. SpaceWire is defined in the European Cooperation for Space Standardization

ECSS-E50-12A standard [1]. It is being used on many space missions.

1.2 RMAP

The remote memory access protocol (RMAP) [2] provides a means for one

SpaceWire node to write to and read from memory inside another SpaceWire node.

The aim of RMAP is to standardize the way in which SpaceWire units are configured

and to provide a low-level mechanism for the transfer of data between two SpaceWire

nodes. For example RMAP may be used to configure a camera or a mass memory

device. The camera device may then write image data to allocated areas of memory in

the mass memory, or the mass memory may read image data from the camera.

RMAP provides three commands: read, write and read-modify-write:

 The read command reads one or more bytes of data from a specified area of

memory in a destination node. The data read is returned in an RMAP reply

packet.

 The write command writes one or more bytes of data to a specified area of

memory in a destination node. An acknowledgement may be returned to the

initiator of the write command if requested in the command.

 The read-modify-write command reads a register (or memory) returning its

value and then writes a new value, specified in the command, to the register. A

mask can be included, in the command, so that only certain bits of the register

are written. This may be used to provide a variety of semaphore and

handshaking operations.

The RMAP standard is currently going through the European Cooperation for Space

Standardization (ECSS) review and approval process and should be issued formally in

the first quarter 2009. In the meantime the draft specification has been used for

several devices and missions.

1.3 IP CORES

SpaceWire has been adopted for use on many space missions partly because of the

ready availability of intellectual property (IP) cores, components, software drivers,

and development support and test equipment. A SpaceWire CODEC designed by the

University of Dundee and implemented in VHDL is available as an IP core from ESA

for European space projects [3]. This CODEC has been designed into several

SpaceWire chips including the SpW-10X SpaceWire router chip designed by

University of Dundee and Austrian Aerospace and implemented in an Atmel radiation

tolerant ASIC [4]. A wide range of development support and test equipment is

available from STAR-Dundee Ltd [5] and other organizations.

With the development of the RMAP standard there is a need for an IP core that

implements the RMAP protocol. This core needs to be configurable to suit many

different applications.

2 RMAP IP CORE CONTEXT

The RMAP IP core fits between User logic and the SpaceWire interface as illustrated

in Figure 1. There are two types of RMAP IP core:

 The one that sends out RMAP commands and receives any replies, which is

referred to as the Initiator RMAP Interface

 The one that receives RMAP commands executes them and sends out any

required replies, which is referred to as the Target RMAP Interface.

Initiator
User Logic

Initiator
RMAP

Interface

SpaceWire
Interface

SpaceWire
Interface

Target
RMAP

Interface

Target
User Logic

Request to
Send RMAP
Command

RMAP
Command

SpaceWire
Packet

Containing
RMAP

Command

RMAP
Command

Write/Read
/RMW

Operation

Status,
Error Code,

Or Data

RMAP
Reply

SpaceWire
Packet

Containing
RMAP
Reply

RMAP
Reply

Any
Data
Read

Figure 1 RMAP Initiator and Target

The initiator user logic prepares the command along with any associated data for a

write or read/modify/write (RMW) command. In the case of a read command the

initiator user logic also prepares information detailing where the data from the read

reply is to go. Once all this information is ready the initiator user logic instructs the

initiator RMAP interface to send the command. The initiator RMAP interface reads

the relevant command and data information from the user logic, forms the RMAP

header, generates header and data CRCs and then sends the command. It will also

reject the command if the information provided does not correspond to a valid RMAP

command. The RMAP command is sent in a SpaceWire packet over the SpaceWire

interface.

The SpaceWire packet is received by the SpaceWire interface at the target. If the

packet is an RMAP command packet it will be passed to the target RMAP interface

which checks that it is valid and then executes the command, writing to or reading

from target user logic. In the case of a write command the RMAP data field is written

into memory or registers within the target user logic. If an acknowledgment to the

write command has been requested then this will be formed by the target RMAP

interface and sent out of the SpaceWire interface. In the case of a read command data

is read from target user logic memory or registers by the RMAP interface and

returned in a reply packet via the SpaceWire interface.

Reply packets travel across the SpaceWire fabric back to the initiator of the original

command. They are received by the SpaceWire interface and (if they are RMAP

replies) are passed to the initiator RMAP interface. Replies to write commands may

signal to the initiator user logic that the command has been executed. Replies to read

commands will write the data read from the target user logic to the required

designation in the initiator user logic.

A node can contain both an initiator RMAP interface and/or a target RMAP interface

i.e. be able to both send and receive commands. An initiator/target is illustrated in

Figure 2.

INITIATOR/TARGET NODE

INITIATOR ONLY NODE

TARGET ONLY NODE

TARGET ONLY NODE

Initiator
User Logic

Initiator
RMAP

Interface

SpaceWire
Interface

SpaceWire
Interface

Target
RMAP

Interface

Target
User LogicRequest to

Send RMAP
Command

RMAP
Command

RMAP
Command

Write/Read
/RMW

Op.

Status,
Error Code,

Or Data

RMAP
Reply

RMAP
Reply

Any
Data
Read

Target
RMAP

Interface

Target
User Logic

RMAP
Command

Write/Read
/RMW

Operation

RMAP
Reply

Any
Data
Read

SpaceWire
Interface

Target
RMAP

Interface

Target
User Logic

RMAP
Command

Write/Read
/RMW

Op.

RMAP
Reply

Any
Data
Read

Initiator
User Logic

Initiator
RMAP

Interface

Request to
Send RMAP
Command

RMAP
Command

RMAP
Reply

SpaceWire
Interface

Status,
Error Code,

Or Data

Sp
ac

eW
ir

e
Fa

b
ri

c

Figure 2 System using RMAP Initiator/Target

3 RMAP IP CORE ARCHITECTURE

The architecture of the RMAP IP core is illustrated in Figure 3.

SpaceWire

Interface

Clocks

& Reset

DIN

CLK RST

SIN

DOUT

SOUT

SpaceWire

Time-Code

Handler

Authorise Parameters

Tick Out
Time Out

Authorisation

CONFIG

STATUS

User

Interface

SpW

Packet

Loop-

Back

Protocol

De-Mux RMAP Command

Non RMAP

Protocol

Mux RMAP Reply

Non RMAP

RMAP

Initiator

Handler

Initiator

DMA

Controller

Indicate

Command

RMAP Command

RMAP Reply

Non RMAP Rx

Non RMAP Send

Data

R/W

EN

Bus GNT

Bus REQ

Addr

Target

DMA

Controller

RMAP

Target

Handler

Tick In
Time In

Figure 3 RMAP IP Core Architecture

The SpaceWire Interface is responsible for receiving SpaceWire packets and time-

codes and passing them to the SpaceWire Loop-Back and Time-Code Handler

respectively. It also transmits SpaceWire packets when requested to do so by the

SpaceWire Loop-Back. The SpaceWire Interface is configured by CONFIG inputs

and SpaceWire link status information is made available on the STATUS outputs.

The SpaceWire Loop-Back block provides a means of looping back SpaceWire data

characters, EOPs and EEPs. When Loop-Back is disabled, received SpaceWire

packets are passed to the Protocol De-Multiplexer and SpaceWire packets from the

Protocol Multiplexer are passed to the SpaceWire interface for transmission. When

Loop-Back is enabled, received SpaceWire packets are passed immediately to the

SpaceWire transmitter, and SpaceWire packets from the Protocol Multiplexer are

passed immediately to the Protocol De-Multiplexer. Time-codes are not affected by

the SpaceWire Loop-Back block.

The Protocol Multiplexer is responsible for deciding which SpaceWire packet is to be

passed to the SpaceWire Interface via the SpaceWire Loop-Back for transmission.

There are three sources of SpaceWire packet for transmission: RMAP Initiator

Handler which sends RMAP commands, RMAP Target Handler which sends RMAP

replies and the non-RMAP interface which may provide non-RMAP packets for

transmission.

The Protocol De-Multiplexer is responsible for deciding where received SpaceWire

packets are to go: the RMAP Initiator Handler receives RMAP replies, the RMAP

Target Handler receives RMAP commands and the non-RMAP interface is passed any

other packets.

The RMAP Initiator Handler is responsible for generating and sending RMAP

commands based on information provided in user memory. When appropriate it will

wait for any reply to the command and inform the initiator user application that the

RMAP operation has completed or failed. Any data received with a reply is placed in

memory specified by the user application when the RMAP command was generated.

Multiple outstanding transactions are permitted.

The Initiator DMA controller provides an interface to user memory for reading

RMAP commands from memory that are to be sent and for writing any data in RMAP

replies to memory. It is responsible for gaining access to the user data bus and

performing necessary memory read and/or write operations.

The RMAP Target Handler is responsible for checking and responding to valid

RMAP commands. It will set up the Target DMA controller to perform reads and

writes to user memory and registers and will form the reply to the RMAP command

for sending by the SpaceWire interface. The RMAP Handler is configured by the

CONFIG inputs and status information from the RMAP Handler is available on the

STATUS outputs.

The Target DMA controller provides an interface to user memory and registers for

writing data sent in an RMAP command to memory or reading from memory

specified in an RMAP command. It is responsible for gaining access to the user data

bus and performing memory read and/or write operations as determined by the RMAP

command. The Target DMA controller competes with the Initiator DMA controller

for access to the user data bus.

The Time-Code Handler is responsible for checking time-codes and maintaining the

value of the time-code counter. It will assert the TICK_OUT signal when a valid time

code is received and put the value of each valid time-code on the TIME-OUT output.

The time-code handler can also generate time-codes using the TICK_IN and TIME-IN

inputs.

The Configuration and Status registers hold configuration and status information for

the RMAP IP core. On power up certain configuration registers are loaded with

default values specified by the CONFIG interface. Thereafter the configuration values

may be changed by writing to the configuration registers either by a SpaceWire-

RMAP command or by the user logic writing to the appropriate registers. Status

information from the RMAP IP core is held in status registers which can be read by

SpaceWire-RMAP command or by the user logic. Certain status information is also

available on dedicated signals, STATUS, from the RMAP IP core.

The Clock and Reset block is responsible for providing the user reset signal, RESET,

to the relevant parts of the SpW/RMAP IP core ensuring a clean condition after the

reset signal has been asserted. It is also responsible for generating any necessary clock

signals from the single clock input signal, CLK.

4 RMAP IP CORE PERFORMANCE

The RMAP Target IP core has been extensively tested using an in-house test bench

that performs extensive testing, covering many possible configurations and error

conditions.

The RMAP Target IP core has been implemented in both Xilinx and Actel FPGAs.

On the Xilinx Spartan 3 device the complete design related SpaceWire interface

operates comfortably with link speeds of 200 Mbits/s. An initial implementation on an

Actel AX1000 FPGA operates at 100 Mbits/s transmit speed and over 150 Mbits/s

receive. Little effort has been spent on optimising either design for performance.

5 CURRENT AND FUTURE WORK

At present work is focussed on completing the RMAP Initiator design and testing this

in Xilinx and Actel FPGAs. Two alpha customers are currently working with the

RMAP Target IP core providing feedback on the design.

Some effort will be spent improving the performance of the Actel AX1000

implementation.

The RMAP IP core will be available from ESA for use on ESA projects only and

from STAR-Dundee Ltd for use on any other project.

6 ACKNOWLEDGEMENTS

The authors acknowledge the support of ESA for the present work which is funded by

ESA under ESA Contract No. 220774-07-NL/LvH.

7 REFERENCES

[1] ECSS, “SpaceWire: Links, nodes, routers and networks”, ECSS-E50-12A, January

2003

[2] ECSS “SpaceWire Protocols”, ECSS-E-ST-50-11C, Draft 1.3, July 2008

[3] C. McClements, S.M. Parkes, and A. Leon, “The SpaceWire CODEC,”

International SpaceWire Seminar, ESTEC Noordwijk, The Netherlands,

November 2003.

[4] C. McClements, S. Parkes, G.Kempf, “SpW-10X SpaceWire Router User

Manual”, Issue 3.4, July 2008 available from http://www.atmel.com/dyn/

products/product_card.asp?part_id=4339

[5] www.star-dundee.com

http://www.atmel.com/dyn/%20products/
http://www.atmel.com/dyn/%20products/

