PROPOSAL OF CSP BASED NETWORK DESIGN AND
CONSTRUCTION

Session:Network and Protocol
Short Paper

*

Kazuto Tanaka, Satoshi Iwanami, Takeshi Yamakawa, Chikara Fukunaga
Tokyo Metropolitan University, Hachioji, 192-0397 Japan

Kazuto Matsui
Prominent Network Inc., Tokyo, 104-0032 Japan

Takashi Yoshida
Smartscape Inc., Tokyo 151-0051 Japan

ABSTRACT

We have designed a network router suited to be used in a SpaceWire network.
The design was based on a formal method using CSP (Communicating Sequential
Processes). The performance of the router has been verified by implementing it in
a network with several processors [1]. In this paper we discuss the reason why we
use CSP as a formal design method for the router-network system, actual design
and refinement procedure. Discussions are emphasized on necessity of a formal
method like CSP to construct and develop a secure system such as devices used in
SpaceWire network system.

1 CSP MODEL

As bit serial interconnect protocol adopted by SpaceWire allows us to form
flexible network topology, we can construct the best optimized network system for
a particular space mission. We can make also a fault-tolerant system on top of that
by adding several duplicated network path rather than minimal topology. Many
processors in the system should process and analyze data inputted concurrently
from the front-end devices, and accurate information as a result of data analysis
should be feed-backed to the front-end in a real time manner. Since a network
comprises several active processors as well as measurement devices , the network
system itself can be regarded as a parallel (concurrent) system with many pro-
cesses. We have to, therefore, design the hardware system and application system
with extremely strict care to avoid resource conflicts among processes.

*Correspondong author:fukunaga@tmu.ac. jp

Formal (design) methods are known to be very effective to establish a model
based on the specification in a mathematical way and to verify the model meets the
specification consequently. With a formal method we try to express a system spec-
ification in algebraic, symbolically logic or graphically theoretical way. Although
each method uses different way to design a model, but usually every method has
some algorithm to develop the model (namely to express the model in a different
expression but consistently in a mathematical manner). The model developed in
this way is used for the refinement or design verification. If we describe a model
using a some formal method, and the model is verified equivalent as the original
specification, then the implemented model after some refinement is thought to be
verified in the design description level.

Communicating Sequential Processes (CSP) [2] is one of formal methods, and
is known to be effective for description of a concurrent (parallel) system in which
many processes (processors) work in parallel. We can express synchronization and
concurrent processing in a simple way with CSP. In a parallel system, however,
each process is described in a sequential manner, and a parallel processing between
processes is achieved with synchronized communication between them with a con-
cept of channels. Processes are shared their commonly used variables through the
channel communication but they never keep shared memory. The real time con-
dition of the system is also satisfied because of the inherent event driven nature
embedded in CSP as a channel communication.

There is a verification tool to point out the existence of some failures (livelock,
deadlock and/or divergence) in a system described in CSP, which is called FDR2 (
Failure Divergence Refinement Version 2) [3]. With this refinement application, we
can validate a model description automatically from the view point of existence of
non-determenistic parts, namely livelocks or deadlocks. FDR2 is, hence, a relevant
tool for system designers who use CSP for system modeling. In the following
section we demonstrate the usage of the tool for our network design.

2 CROSSBAR SWITCH EXAMPLE
There are algebraic notations (concepts) of CSP description. Among them
relevant concepts are introduced here in order to follow the discussions given below;

1. parallel processing : p | a, b]| ¢ which means processes p and q are running in
parallel in which common parameters for two processes are exchanged using
channels a, b,

2. channel input c¢?z : ¢ — p means variable z of type a is inputted through
channel ¢, then proceeds to process p, and clv — ¢ means variable v is
output through channel ¢, and then proceeds to process g¢,

3. sequential processing : p ; ¢ means a sequential processing, namely process
q is followed after the completion of p,

4. p || ¢ means two processes p and ¢ are running in parallel without channel
communication, this is called interleave, and H‘ o Pi means the extended
(3

version of interleave in which all processes p;,¢ € T runs independently in
parallel, and

5. data series is expressed as s = (a, b .. n), and two functions; head and tail

work as tail(s) = (b..n) while head(s) = a.
out_x.1 out_x.3
— SRS
| e
in_x.1 In_x.3
Xbar
out_x.2 out_x.4
_ __
— —
in_x.2 In_x.4

Figure 1: Four port crossbar switch with input/output channel naming

Based on these building blocks, we can design, for example, a primary crossbar
switch (process xbar) that is indicated in fig. 1. In order to keep discussion simple,
we assume the number of bi-directional ports is restricted to four(Tag = {1, 2, 3,4})
and the destination port number is stored in the header part of data packet
(packet = (port number, data)).

zbar(in, out) = " INOUT (i, in, out), (1)

1€ T

INOUT (i, in, out) = in.i?packet —
out.head(packet)!tail(packet) — INOUT (i, in, out) (2)

Then we implement the actual system model as
SYSTEM = zbar(in_z, out_x), (3)

where both in_z(in) and out_z(out) are arrays of range Tag = {1,2,3,4} and
the k-th element is specified like in.k. The model has been checked with FDR2
and was found neither deadlock, divergent failure (livelock) nor non-deterministic
process.

As the next step of the development, we have added a broadcast besides one-
to-one switching. The broadcast means the same data(message) from a particular
channel (1) is relayed to all the ports except the source (Tag \ {i}). This broadcast

can be achieved in CSP by modifying (2) as
INOUT (i, in, out) = in.i?packet —
if head(packet) == 0 then
ll & 7ug\ iy out-jltail(packet) — Skip; INOUT (i, in, out)
else
out.head(packet)tail (packet) — INOUT (i, in, out), (4)

where Skip indicates that it reaches (successful) termination. We introduce the
port number zero for the broadcast. We bring an ”if ... else” statement to judge
one-to-one or broadcast switching. In this way (4) has been naturally derived from
(2). We have also confirmed the validity of this model with FDR2.

If it is necessary not to send the same message to all the port (broadcast),
but to transfer it to some selected channels, we should use a cascade link of two
crossbar switches as shown in fig. 2. Even if we specify the broadcast connection
in the second router, we send the message to three out of five channels. The CSP
description of this model can be written from (3) by simply taking into account
the parallel processing of two crossbar switches as

SYSTEM = zbar(in_z, out_x) || Left_ch, Right_ch]| zbar(in_z', out_z') (5)

out_x.1 out x.3
< e
— |
in_x.1 in_x.3
out_x.2 Xba r Left_ch in_x'.3
— L~
Right_ch out_x'.3
in_x.2 Xb ar
in_x".2 in_x".4
—p | e
— e
out_x.2 out_x'.4

Figure 2: Cascade link of two crossbar switches. We can make one-to-many
switching to the channels x’.2, x’.3 and x’.4 from any other channels with
this circuit.

References

[1] K.Tanaka et al., ”The design and performance of SpaceWire Router-network
using CSP”, presented in this conference.

[2] C.A.R.Hoare, ”Communication Sequential Processes”, Prentice-Hall Inc.,
1985

[3] Formal System Inc., 7"Failure Divergence Refinement (FDR) 27,
http://www.fsel.com

