Leveraging Serial Digital Interfaces Standardization

The RASTA Reference Architecture Facility at ESTEC

Farid Guettache, Aitor Viana Sanchez, Massimiliano Ciccone, Claudio Monteleone, Chris Taylor ESA/ESTEC
Manual Prieto, Ignacio Garcia Tejedor University of Alcala Madrid Spain

SpaceWire Conference 2008 - Nara Japan
4-6 November 2008
Content

- What is RASTA
- Objectives
- Reference Architectures
- Data systems Testbed
- Current Hardware configuration
- Current Software configuration
- Current Developments
- Conclusion
RASTA

- RASTA is the system level test bed of the Data system Division
- It provides a reference environment for hosting technology developments (TRP, GSTP, in-house)
- RASTA incorporates agreed ESA and ECSS standards as well following the latest architectural trends harmonized with European Industry
- RASTA is designed to be open to facilitate cooperation with other disciplines and test-beds
Objectives

- Early & Rapid prototyping of new avionic architectures (HW, SW and HW+SW)
- Test & Demonstration of developed technology in representative environment
- Testing & Demonstration in areas of standardization (CAN, SOIS, Mil-1553)
- Project support: benchmarking, independent analysis
Objectives -2

- Assessment of performances (with HW in the loop)
- Validate new trends before implementation (CAN, protocols, sensor bus, ...)
Reference Architecture
Integrated Architecture

- Core functions combined in a few large ASICS, providing enhanced reliability and small footprint
- Essentially a ‘System On Chip’
- The core DHS function (S/C controller) are mission independent
Decentralised Architecture

- **Data System** implemented as a set of **processing nodes** communicating through a (high performance) network.

- **High speed** microprocessors and **fast** inter-processor communications supported by **Leon**, and **SpaceWire**.
Integrated or Decentralised?

There is no single architecture that fits all needs, rather, the on-board DHS architecture can be a compromise between two models:

- Highly integrated and Decentralised

- Rasta must provide capabilities to support both models
To setup the testbed we have to consider

A- Repository of Building blocks

- The individual components developed for space usage (Processors, IP cores)
- The functional blocks that comprise the onboard data system
- The way in which the functional blocks are interconnected and assembled to form an onboard architecture
B- Deployment and configuration of selected components and architecture
- Boards and racks
- Software layers

C- Development
- Application layer support component like CFDP and SOIS
- New Functional block like the Mass Memory
Data Systems Components

- **Processor**: ERC32, LEON, COTS
- **Interfaces components**: Milbus, CAN, SpaceWire, ……
- **Memory**: Flash, SDRAM,…..
- **IP cores & dedicated ASICs**: TM, TC, RTC, …..
Data Systems Functional Blocks

- Processor Module
- I/O Modules
- Data Storage: Mass Memory
- TMTC system
- Communication Protocols: space link & onboard
- Reconfiguration Module, safeguard memory
Data Systems Connectivity

- I/O System architecture: Bus, network, point to point
- Redundancy Architecture, Primary Chain/Secondary Chain,
- Cross-coupling/Cross-Trapping & Back plane
- TMTC input output
Current Hardware Configuration
Current Software Configuration

Drivers

RTOS (RTEMS)

POSIX

File System

Operating System Abstraction Layer (OSAL)

Other

APPLICATION SUPPORT LAYER

PUS

SOIS

CFDP

SpaceWire Conference 2008 - Nara Japan
4-6 November 2008
Current Development
CFDP end to end application test
There are several issues related to the use of Mass Memory that require evaluation:

- Access – file system, packet store, raw
- Dumb or intelligent
- Connectivity – direct downlink, via DHS
- Architectural - dedicated to payload, partitioned

Ultimately we probably need a combination of the above
Modular Advanced Mass Memory Architecture

- Independent from memory device technology (SDRAM, Flash ..)
- Connectivity based on Spacewire
- Implementing advanced concept
Conclusion - 1

- Previous/Ongoing activities
 - Support to CCSDS/ECSS standardisation process
 - Demonstrating and validating CFDP implementations in end to end configuration
 - SOIS Implementation
 - Mass Memory

Future activities
Conclusion -2

- One wire sensor bus implementation
- Incorporation of Wireless interface
- Evaluation of ExoMars CFDP configuration
- SpW components and Protocols in backplane, sensors, distributed architecture

SpaceWire Conference 2008 - Nara Japan
4-6 November 2008