A Portable SpaceWire/RMAP Class Library for Scientific Detector Read Out Systems

Outline
- Context
- Concept and Structure
- Implementation
- Usage
- Portability
- Performance and Applications
- Summary

Takayuki Yuasa (yuasa at mark amalthea.phys.s.u-tokyo.ac.jp), Wataru Kokuyama, Kazuo Makishima, Kazuhiro Nakazawa
The University of Tokyo

Masaharu Nomachi
Laboratory of Nuclear Studies, Osaka University

Motohide Kokubun, Hirokazu Odaka, Takeshi Takashima, Tadayuki Takahashi
JAXA/ISAS

Takayuki Yuasa et al, “A Portable SpaceWire/RMAP Class Library for Scientific Detector Read Out Systems” International SpaceWire Conference, Nara, Japan, 4-6 November 2008
Context

- Developing satellite-onboard scientific instruments.
- Developing SpaceWire/RMAP-based data acquisition system (DAQ).
 - From the beginning of R&D or Bread Board Model phases.
 - Expect smooth transition to Flight Model developments.
 - Hardwares for ground-based experiments were developed by JAXA, Universities and Enterprises.
 - Odaka et al. and Yuasa et al. (ISC2007) for practical applications.
- Upgraded SpaceWire/RMAP class library used in read-out programs (user programs) on SpaceCube computers.
 - Emphasis on Modularity, Portability and Documentation.
 - Based on experience in SDS-I/SWIM development (poster by Kokuyama et al. in this conference).
SpaceWire/RMAP Library: Concept and Structure

- Modular and layered structure.

- Encapsulation of OS-dependent and hardware-dependent functions.
 - SpaceWire I/F hardware and driver
 - Thread (or Task in RTOS)
 - TCP/IP socket

- RMAP Software Interpreter.
 - RMAPEngine and RMAPSocket classes
 - Abstract expression of RMAP Destinations and RMAP Packets
 - Multiple- and concurrent-RMAP transactions from multithreads
SpaceWire/RMAP Library : Implementation

- Fully written in C++.
 - ~30,000 lines including Doxygen-style in-source documentations.
 - No dependency on external libraries except for STL (almost always available).
 - API Reference (English), and Tutorial (Japanese) are also available.

- SpaceWireIF wrapper class for
 - SpW I/F by NEC Soft, Ltd.
 - SpW I/F by Shimafuji Electric Inc.

- Thread and TCP/IP Libraries for
 - POSIX (ordinary Linux, Mac OSX)
 - T-Kernel (RTOS)
Example of Simple RMAP Read/Write

1. Create a SpaceWireIF instance.
2. Create an RMAPEngine instance.
3. Set an RMAPDestination instance.
 - Logical/Path Addresses of Destination and Source.
 - Destination Key, etc.
4. Open an RMAPSocket instance.
 - Giving the RMAPDestination instance.
 - Multiple instances can be opened from single thread.
5. Invoke RMAPSocket::read() or write() methods.
 - Data are passed as vector class
 - Errors could be thrown as exception class instances.
SpaceWire/RMAP Library : Portability

- The portability enables user programs to run on various environments; SpC, PC and Mac.
 - Easily ported from a BBM development environment to another one.

- We performed an instrument read-out experiment.
 - First executed on SpaceCube computer, successfully acquired data.
SpaceWire/RMAP Library: Portability

- Easily ported from a BBM development environment to another one.

We performed an instrument read-out experiment.
 - First executed on SpaceCube computer, successfully acquired data.
SpaceWire/RMAP Library: Portability

- Easily ported from a BBM development environment to another one.

- We performed an instrument read-out experiment.
 - First executed on SpaceCube computer, successfully acquired data.
We performed an instrument read-out experiment.

- First executed on SpaceCube computer, successfully acquired data.
- Then, the same program (same code) was also successfully compiled and executed on a PC (SpaceWireIF of SpaceCube computer was used via TCP/IP bridge).
Performance and Applications

Transfer Speed

- Using SpaceWire I/F IP Core by Shimafuji Electric Inc. (link speed 100MHz) on SpaceCube (CPU 200MHz).

- SpaceWire layer ~ \textbf{32Mbps} (without RMAP packet interpretation or data copy to user memory space)

- RMAP layer ~ \textbf{3Mbps} (with RMAP packet interpretation, CRC calculation, data copy to user memory space)

Applications

- In the X-ray CCD and the X-ray micro-calorimeter experiments. => For next Japanese X-ray astrophysical mission ASTRO-H.

- \textbf{“SpaceCube Cube”} demo displayed in Exhibition Room also uses SpaceWire/RMAP Library. => Example of error handling and network topology description.
Summary

- We developed SpaceWire/RMAP Library in C++ language improving portability and modularity. We showed the validity of the portability in a practical instrument read-out experiments.

- Using Shimafuji Electric SpaceWire I/F on SpaceCube, we obtained transfer speeds of 32Mbps (SpaceWire layer) and 3Mbps (RMAP layer).

- The library has been used in developments of some scientific instruments.