SpaceWire Margins Tester

Presented by:

Alex Kisin (MEI/NASA GSFC)
alexander.b.kisin@nasa.gov

Glenn Rakow (NASA GSFC)
glenn.p.rakow@nasa.gov
SpW performance degrading factors:

• **Evolutional:**
 – Higher speeds
 – Longer distances
 – Lower Bit Error Rate (BER) levels requirements

• **Physical media losses:**
 – Smaller wire cross-section (to save weight)
 – Cable/connector parameters deviations and imperfections

• **Interface hardware:**
 – Parameters variations from different IC manufacturers

• **External media susceptibility:**
 – Common Mode Voltage (CMV) noise
 – Electro Magnetic Interference (EMI)

Needed: verification tools to assess SpW margins!!
SpaceWire Margins Tester

Parts to be tested:

- **FPGA / ASIC**
 - *Digital simulation*
 - Standard design procedure
- **Transmitter**
 - *No testing except maximum drive current*
 - Fixed and specified by manufacturer
- **Receiver**
 - *Most likely to fail (induce errors) due to various operational conditions*
 - Marginal operation conditions needs to be established

Required: define marginal receiver operation conditions
Parameters to be simulated:

- **Skew/Jitter:**
 - Between Data and Strobe
 - Within each D/S pair

- **Received signal span:**
 - Guaranteed minimum Peak-to-Peak (P2P) voltage span at receiver end

- **Common mode voltage:**
 - Received signal bias

Goal: simulate marginal receiver “eye” at desired BER or FER (Frame Error Rate)
Parameter simulation diagrams:

- **D/S skew**
 - Red: fixed positive D / negative S skew
 - Blue: fixed negative D / positive S skew

- **LVDS bias**
 - +1.2V

- **“Eye” span**
 - Span

Major SpW physical layer parameters can be simulated
Suggested Tester types:

• **Coarse** (no effects on protocol or communication speed):
 – *Pass through mode*:
 • Inserted between known good SpW transmitter (Auxiliary Tester) and Device Under Test (DUT) receiver for full duplex peer-to-peer SpW operation
 – *Loop back mode*:
 • Connected to DUT as Slave and loops marginalized signal back to DUT
 – *Error detection*:
 • DUT SpaceWire dropouts monitoring

• **Precise** (simulates protocol and communication speeds):
 – *Master mode*:
 • Connected to DUT and works as Master
 • Emulates SpW protocol with simultaneous signal marginalization
 – *Error detection*:
 • Works as simple BER tester, assuming that DUT can report errors back to it
 • Dropouts monitoring as in Coarse tester

Proposed: create 1 Coarse tester by Q4 2008; start on Precise tester in Q1 2009
Coarse tester diagram (Pass mode):

- Aux. SpW Tester
- Mode switch
- Skew injector
- Span injector
- Bias injector
- Front buttons
- Micro controller
- Front display
- Optional isolated USB 2.0
- TX
- RX

Full duplex communication between Master and DUT
Coarse tester diagram (Loop mode):

Tester is used as “bend pipe” for DUT
Coarse tester parameters for both Pass and Loop modes:

- **D and S Skew injection:**
 - **Simulation range**
 - 0 to ±30 nS (speed dependent) from “0” nominal with D leading and S trailing, or vs. vs.; max of 61 steps
 - **Internal differential pair skew injection:**
 - None
 - **Step resolution**
 - 1 nS with ± 0.5 nS accuracy

- **Span injection:**
 - **Simulation range**
 - 180–720 mV peak-to-peak at 100 Ohm termination
 - **Step resolution**
 - 20 mV with ± 10 mV accuracy in 28 steps

- **Bias injection:**
 - **Simulation range**
 - ± 1.2 V from +1.2 V LVDS nominal
 - **Step resolution**
 - 200 mV with ± 10 mV accuracy in 13 steps

- **Other parameters:**
 - **Operating speed**
 - 10 to 200 Mbps (with potential to 310 Mbps) in 20 (31) steps of 10 Mbps each
 - **Number of stored test profiles**
 - up to 8
 - **Protocol dropouts detection**
 - Up to 99999 over 99999 seconds (27+ hours)
 - **Pin 3 (Transmit Ground) short to chassis detection and warning**
 - **Dimensions (DxWxH):**
 - 160mm x 160mm x 86mm
 - **Optional communications port**
 - Isolated USB 2.0

Most LVDS and SpW parameters are being covered
SpaceWire Margins Tester

Coarse tester preliminary front panel appearance:

Stand alone portable unit
Coarse tester preliminary back panel appearance:

Optional USB port control
Coarse tester parameters control:

- Horizontal encoder wheel:
 - Selects between Profile, Mbps, Skew, Span, Bias fields
- Vertical encoder wheel:
 - Selects between available values assigned to the above fields
- Scan button:
 - Momentary press:
 - Toggle Scan option for each individual field (Skew, Span, Bias)
 - 1 sec press:
 - Toggle Scan option for all 3 fields at a time regardless of currently selected field
- Drop button:
 - Momentary press:
 - Start / Stop Drops counter and Timer
 - 1 sec press:
 - Reset Drops counter and Timer
- Mode button:
 - Switches between Loop and Pass modes
- USB port:
 - Provides isolated ground communications with host computer
 - Transmission
 - Immediate report on any wheels / buttons changes
 - Immediate report on any changes of Drop counter with 1 ms quantization
 - Reception
 - New setup data and functions

Simple interface
Precise tester diagram:

Tester will provide more comprehensive and automated DUT simulation
Precise tester preliminary parameters:

- **D and S Skew injection:**
 - *Simulation range*
 - ±50 nS (speed dependent) from nominal
 - *Internal differential pair skew injection:*
 - ±1 nS
 - *Step resolution*
 - 0.2 nS ± 0.05 nS

- **Span injection:**
 - *Simulation range*
 - 180–720 mV peak-to-peak at 100 Ohm termination
 - *Step resolution*
 - 20 mV ± 10 mV

- **Bias injection:**
 - *Simulation range*
 - ±1.2 V from +1.2 V LVDS nominal
 - *Step resolution*
 - 100 mV ± 10 mV

- **Other parameters:**
 - *Maximum operating speed*
 - 400 Mbps (TBR)
 - *Number of stored test profiles*
 - No limitations

Major requirement: DUT suppose to have a way to report errors back to tester
Precise tester error reporting locations diagram:

DUT might provide several locations for error reporting readbacks
Error reporting locations comparison:

- **Location #1 (on LVDS level such as in Aeroflex’s PHY01 chip):**
 - **Advantages**
 - Very simple implementation
 - **Disadvantages**
 - Span and bias are corrected by LVDS receiver, skew is not corrected and is looped back exactly the same
 - BER is very poor and very imprecise

- **Location #2 (after SpW decoder and message processor with minimum core modifications):**
 - **Advantages**
 - Simple implementation (just a loopback connection)
 - No special error registers
 - **Disadvantages**
 - BER accountability is poor: possibility that only TX dropouts could be counted

- **Location #2 (after SpW decoder and message processor with medium core modifications):**
 - **Advantages**
 - More complex implementation (loopback connection and protocol error registers to be reported on top of looped data)
 - Excellent BER accountability
 - **Disadvantages**
 - Special codes in protocol: trying to differentiate error registers data in looped back data stream
 - High speed TX transmission: may induce more noise in RX data

- **Location #3 (after a special built-in error processor):**
 - **Advantages**
 - Excellent BER accountability
 - Possible low speed TX rate: only received errors are transmitted back
 - Possibility of implementation of standard BER PRN sequences
 - **Disadvantages**
 - New built-in function in SpW core

Different error reporting locations will yield different BER validity results
Suggested requirements to DUT for better testing:

- **Built-in received errors counter:**
 - General received error counter
 - Optional differentiation of error types

- **Communication with DUT:**
 - High speed receive rate from Tester to DUT
 - Preferable: fixed 10 Mbps error count transmit rate from DUT to Tester
 - Less preferable: injection of error results into back data stream

- **Error testing protocol:**
 - Preferable: standard PRBS (PRN) from $2^7 - 1$ to $2^{15} - 1$ (only 1 is required)
 - Less preferable: standard SpW with new error codes

- **Error display:**
 - “Coarse” tester: counting SpW TX dropouts so it can be converted to BER
 - “Precise” tester: standard BER format fashion on remote test computer

Added complexity enhances timing simulation and BER measurements