Lessons Learned From Implementing Non-Standard Spacewire Cabling For Tacsat-4

Derek Schierlmann, Eric Rossland and Paul Jaffe

Naval Center for Space Technology, Naval Research Laboratory Code 8243, 4555 Overlook Ave SW, Washington, DC 20375, USA

E-mail: derek.schierlmann@nrl.navy.mil, eric.rossland@nrl.navy.mil, paul.jaffe@nrl.navy.mil
Outline

• Introduction
 – Our configuration
 – TacSat-4 vs. ECSS-ST-50-12C

• Data
 – Current status of design
 – I&T team comments
 • EAGE
 • GSW
 • Cable problems
 • Shield and Twisting confusion
 – Left over from previous study
 • Eye diagrams
 • Probe bandwidth
 • Crosstalk from Allen
 • Not speed limited
 • Series IV vs. Series II

• Conclusions
 – Long cables worked
 – Oscilloscope board issues
 – TDR board issues
Our Configuration

• TacSat-4 was implemented in accordance with the ORS Phase III Bus Standards
 – Specified SpaceWire as high speed data interface
• The SpaceWire link on TacSat-4
 – From the Payload Data Handler (PDH) module to the Universal Interface Electronics (UIE)
 – PDH is on the bus side
 – UIE is on payload side
 – Operates at 25Mbs
• CCSDS space packets are used for the higher level protocol
 – Per ORS Standard Data Interfaces: Bus to Payload, Bus to Ground
TacSat-4 vs. ECSS-ST-50-12C

TacSat-4 Deviations from ECSS-ST-50-12C

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>ECSS-ST-50-12C</th>
<th>TacSat-4 flight</th>
<th>TacSat-4 test</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Cable</td>
<td>cable based on 28AWG (7x36) PFTE jacketed wire</td>
<td>cable based on 26AWG (7x34) GORE-TEX-tape jacketed wire</td>
<td>cable based on 26AWG (7x34) GORE-TEX-tape jacketed wire</td>
</tr>
<tr>
<td>5.3</td>
<td>Connectors</td>
<td>only 9 position micro-D</td>
<td>38999 Series IV connectors</td>
<td>38999 Series IV D38999/40FB35SN & D38999/46FB35PN Deutsch DS07-37S-081 & 13084-37S-5020</td>
</tr>
<tr>
<td>5.4</td>
<td>Cable Assembly</td>
<td>1 segment, 2 identical plug connectors</td>
<td>3 segments, 2 different types of connectors, 6 total connectors</td>
<td>3 segments, 3 different types of connectors, 6 total connectors</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Cable length</td>
<td><10m</td>
<td>3.4m total</td>
<td>10m, 10m, and 18.5m</td>
</tr>
<tr>
<td>6.6</td>
<td>Data rate</td>
<td>2-400Mbs*</td>
<td>25Mbs</td>
<td>25Mbs and 200Mbs</td>
</tr>
</tbody>
</table>

ECSS-ST-50-12C defines max data rate via skew and jitter budget; however, 200Mbs and 400Mbs are accepted norms

- ORS standards require that an ORS bus and payload are capable of
 - Being mated in a depot facility
 - Thus the three segments
 - By minimally trained personnel without specialized tools.
 - Thus the circular connectors
- To test the bus, additional cables were fabricated
 - The three segment 10m cable used for I&T testing with two breaks
 - One for passing thermal vacuum chamber wall
 - Another for the turn on panel of the bus.
- Comm-X payload testing required a longer test cable (18.5m)
- TacSat-4 chose 26 AWG SpaceWire cable manufactured by W.L. Gore & Associates GmbH
 - Less loss
 - Easier to work with: crimp & solder
 - More robust and less breakage
Current status of design

• Qualification of the TacSat-4 SpaceWire link is complete
 – in a previous study [Schierlmann]
 – Cabling, connector was qualified separate from bus

• Box level and system level testing w/ a commercial card
 – PMC SpaceWire card from Dynamic Engineering

• ORS bus and payload teams successfully tested SpaceWire
 – GSE to Bus, GSE to Payload, Bus to Payload
 – Bus I&T (10m cables)
 – Payload I&T (18.5m cables)
 • Still waiting on TVAC

• ORS Phase III bus is in storage awaiting the payload to complete environmental testing

• Upon completion of the Comm-X payload they will be integrated to form the TacSat-4 space vehicle.
 – Full SV level testing will be performed across the SpaceWire link at that point

• Launch in Fall 2009
I&T team comments (1 of 2)

- **EAGE**
 - PMC SpaceWire card
 - Simulated the Comm-X payload interface
 - Simulated a test port interface
 - Accommodated testing both channels of the PDH card.
 - Interfaced directly on Power 7E card
 - Located in our SES (space environment simulator) VME chassis.
 - This location seemed most beneficial for saving space in the SES chassis.
 - However, it proved to make interfacing the cables to the PMC card more difficult.
 - The small work area made it difficult to physically connect the cables to the card itself.
 - Resulted in a few cable wire to pin connections separating and having to rework the cable.

- **GSW**
 - Significant learning curve developing GSW (ground software)
 - Knowing the SpaceWire protocol was helpful
 - Difficult to predict how the PMC card would behave until data was actually flowing across the interface
I&T team comments (2 of 2)

- **Useful tools**
 - A breakout box and logic analyzer proved to be critical tools to help understand and troubleshoot the interface
 - A DESWBO from Dynamic engineering provided an ‘active break-out box’ by buffering the SpaceWire Differential signals for display on a Logic Analyzer
 - Loopback connectors also proved very useful for stand alone testing of both the PDH and PMC cards

- **Cable problems**
 - DVI heritage SpaceWire cables were prone to breaking
 - Happened on previous programs (SECCHI)
 - Occurred during initial TacSat-4 studies
 - 26 AWG Gore cable used on TacSat-4 was robust and easy to work with
 - Some problems with breakage at PMC card connector
 - Always with solder cup connectors, never flying lead (i.e. potted)

- **Shield and twisting confusion**
 - Preliminary designs dedicated a pin to carry the outer shield
 - Since the outer shield is chassis ground, this was unnecessary and ill-advised
 - Twisting Confusion
 - With the addition of the TVAC chamber wall, ambiguity arose as to where the out-to-in twisting was to be done
 - The TacSat-4 bus team suggested to twist once in each cable, so that an odd number of cables resulted in proper in-to-out assignment
Left over from previous study (1 of 2)

• Eye diagrams
 – Eye diagrams were taken using a DSA70604
 – Scope was unavailable for flight qualification
 • Images were useful for validation of the I&T cable
 – The DSA also helped diagnose another problem with the SpaceWire test board

• Probe bandwidth
 – Previously used 400MHz differential probes
 • Rules of thumb suggest that \geq 1GHz probes should be used
 – Testing was performed with 1GHz probes
 • No difference was found between results of the 400MHz and 1GHz probes

• Corrections
 – Not speed limited
 • The previous paper states max speed was 167Mb/s
 • This was from a misunderstanding of the results returned by the SpaceWire driver
 • Scope traces confirm that the tests were indeed run at full 200Mb/s
 – Series IV vs. Series II
 • Previous paper referred to a 38999 Series II with a 10-35 insert arrangement
 • Actually used a 38999 Series IV with an 11-35 insert arrangement
Left over from previous study (2 of 2)

- Crosstalk from Allen
 - TacSat-4 relied on the crosstalk, jitter and skew analysis performed in previous studies
 - JWST Connector Choice study [Allen]
 - Looking at [Allen]
 - Simplify the result to be constant loss (over all f)
 - Fit the configuration to a simple model (right) [Paul, Johnson 1993]
 - Cross talk noise shows a strong correlation to D/h
 - Given this we expect the TacSat-4 connector to perform like a High density D connector
 - Cross-talk performance is as good –or better than- the SpaceWire micro-D
 - Results should not be overstated
 - This is a significant simplification of a complex test
 - However, lacking the time or equipment to perform the test, it provides a baseline
 - A quick answer with some basis in fact
 - This baseline agrees with expectations from visual comparison of connectors
 - DB9 was an outlier from the trend; don’t know why
Conclusions (1 of 3)

• Long cables worked
 – The 10m and 18.5m cables fabricated for environmental test performed well
 • 126ft cable was attempted as well, but failed
 – The extra length increased loss
 • Helped to dampen ringing induced by the discontinuities of two inline connectors (bus and chamber wall)

[Image: COMM-x 60ft (18.5m) test cable scope trace (din @ 200Mbs)]
Conclusions (2 of 3)

- O’Scope board issues
 - After qualifying SpaceWire cables on two occasions, we still see opportunities for improvement with the test board
 - Our attempts resulted in noticeable reflection in the signal
 - Eye diagrams made this reflection obvious
 - Soldered to the internals of the SpaceWire brick from Dundee
 - Risky given the features and cost of the brick
 - In the future we will try to use a modified DESWBO for examining waveforms
Conclusions (3 of 3)

- **TDR board issues**
 - TDR bandwidth of a TDR is 20-30GHz
 - Geometry of the padstack, stack-up, and foot prints are all critically important
 - The TDR test board had excessive discontinuity
 - Large enough to prevent Iconnect from converging to an impedance solution
 - Caused by the antipad around the SMA + conductor being too large [Bakel]
 - When commissioning test boards
 - Know your frequency of interest
 - For this its related to TDR bandwidth (30GHz)
 - Not SpaceWire (<<1GHz)
 - Ensure that your layout engineer is familiar with designing to the frequency of interest
 - For future TDR testing, we will try to use the Gore test board described in [Allen]